Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38640440

RESUMO

Fomes fomentarius is a widespread, wood-rotting fungus of temperate, broadleaved forests. Although the fruiting bodies of F. fomentarius persist for multiple years, little is known about its associated microbiome or how these recalcitrant structures are ultimately decomposed. Here we used metagenomics and metatranscriptomics to analyse the microbial community associated with healthy living and decomposing F. fomentarius fruiting bodies to assess the functional potential of the fruiting body-associated microbiome and to determine the main players involved in fruiting body decomposition. F. fomentarius sequences in the metagenomes were replaced by bacterial sequences as the fruiting body decomposed. Most CAZymes expressed in decomposing fruiting bodies targeted components of the fungal cell wall with almost all chitin-targeting sequences, plus a high proportion of beta-glucan-targeting sequences, belonging to Arthropoda. We suggest that decomposing fruiting bodies of F. fomentarius represent a habitat rich in bacteria, while its decomposition is primarily driven by Arthropoda. Decomposing fruiting bodies thus represent a specific habitat supporting both microorganisms and microfauna.


Assuntos
Artrópodes , Ascomicetos , Coriolaceae , Microbiota , Animais , Microbiota/genética , Carpóforos , Bactérias/genética
2.
Ecology ; : e4312, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38666421

RESUMO

An increasing number of studies of above-belowground interactions provide a fundamental basis for our understanding of the coexistence between plant and soil communities. However, we lack empirical evidence to understand the directionality of drivers of plant and soil communities under natural conditions: 'Are soil microorganisms driving plant community functioning or do they adapt to the plant community?' In a field experiment in an early successional dune ecosystem, we manipulated soil communities by adding living (i.e., natural microbial communities) and sterile soil inocula, originating from natural ecosystems, and examined the annual responses of soil and plant communities. The experimental manipulations had a persistent effect on the soil microbial community with divergent impacts for living and sterile soil inocula. The plant community was also affected by soil inoculation, but there was no difference between the impacts of living and sterile inocula. We also observed an increasing convergence of plant and soil microbial composition over time. Our results show that alterations in soil abiotic and biotic conditions have long-term effects on the composition of both plant and soil microbial communities. Importantly, our study provides direct evidence that soil microorganisms are not "drivers" of plant community dynamics. We found that soil fungi and bacteria manifest different community assemblies in response to treatments. Soil fungi act as "passengers," that is, soil microorganisms reflect plant community dynamics but do not alter it, whereas soil bacteria are neither "drivers" nor "passengers" of plant community dynamics in early successional ecosystems. These results are critical for understanding the community assembly of plant and soil microbial communities under natural conditions and are directly relevant for ecosystem management and restoration.

4.
Environ Microbiome ; 19(1): 8, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38268048

RESUMO

BACKGROUND: Below-ground microbes mediate key ecosystem processes and play a vital role in plant nutrition and health. Understanding the composition of the belowground microbiome is therefore important for maintaining ecosystem stability. The structure of the belowground microbiome is largely determined by individual plants, but it is not clear how far their influence extends and, conversely, what the influence of other plants growing nearby is. RESULTS: To determine the extent to which a focal host plant influences its soil and root microbiome when growing in a diverse community, we sampled the belowground bacterial and fungal communities of three plant species across a primary successional grassland sequence. The magnitude of the host effect on its belowground microbiome varied among microbial groups, soil and root habitats, and successional stages characterized by different levels of diversity of plant neighbours. Soil microbial communities were most strongly structured by sampling site and showed significant spatial patterns that were partially driven by soil chemistry. The influence of focal plant on soil microbiome was low but tended to increase with succession and increasing plant diversity. In contrast, root communities, particularly bacterial, were strongly structured by the focal plant species. Importantly, we also detected a significant effect of neighbouring plant community composition on bacteria and fungi associating with roots of the focal plants. The host influence on root microbiome varied across the successional grassland sequence and was highest in the most diverse site. CONCLUSIONS: Our results show that in a species rich natural grassland, focal plant influence on the belowground microbiome depends on environmental context and is modulated by surrounding plant community. The influence of plant neighbours is particularly pronounced in root communities which may have multiple consequences for plant community productivity and stability, stressing the importance of plant diversity for ecosystem functioning.

5.
Mol Ecol Resour ; 24(2): e13904, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37994269

RESUMO

Several computational frameworks and workflows that recover genomes from prokaryotes, eukaryotes and viruses from metagenomes exist. Yet, it is difficult for scientists with little bioinformatics experience to evaluate quality, annotate genes, dereplicate, assign taxonomy and calculate relative abundance and coverage of genomes belonging to different domains. MuDoGeR is a user-friendly tool tailored for those familiar with Unix command-line environment that makes it easy to recover genomes of prokaryotes, eukaryotes and viruses from metagenomes, either alone or in combination. We tested MuDoGeR using 24 individual-isolated genomes and 574 metagenomes, demonstrating the applicability for a few samples and high throughput. While MuDoGeR can recover eukaryotic viral sequences, its characterization is predominantly skewed towards bacterial and archaeal viruses, reflecting the field's current state. However, acting as a dynamic wrapper, the MuDoGeR is designed to constantly incorporate updates and integrate new tools, ensuring its ongoing relevance in the rapidly evolving field. MuDoGeR is open-source software available at https://github.com/mdsufz/MuDoGeR. Additionally, MuDoGeR is also available as a Singularity container.


Assuntos
Metagenoma , Vírus , Metagenômica , Software , Bactérias/genética , Filogenia , Vírus/genética
6.
New Phytol ; 240(5): 2151-2163, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37781910

RESUMO

Arbuscular mycorrhizal (AM) fungi are crucial mutualistic symbionts of the majority of plant species, with essential roles in plant nutrient uptake and stress mitigation. The importance of AM fungi in ecosystems contrasts with our limited understanding of the patterns of AM fungal biogeography and the environmental factors that drive those patterns. This article presents a release of a newly developed global AM fungal dataset (GlobalAMFungi database, https://globalamfungi.com) that aims to reduce this knowledge gap. It contains almost 50 million observations of Glomeromycotinian AM fungal amplicon DNA sequences across almost 8500 samples with geographical locations and additional metadata obtained from 100 original studies. The GlobalAMFungi database is built on sequencing data originating from AM fungal taxon barcoding regions in: i) the small subunit rRNA (SSU) gene; ii) the internal transcribed spacer 2 (ITS2) region; and iii) the large subunit rRNA (LSU) gene. The GlobalAMFungi database is an open source and open access initiative that compiles the most comprehensive atlas of AM fungal distribution. It is designed as a permanent effort that will be continuously updated by its creators and through the collaboration of the scientific community. This study also documented applicability of the dataset to better understand ecology of AM fungal taxa.


Assuntos
Micorrizas , Micorrizas/genética , Ecossistema , Simbiose , Plantas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Microbiologia do Solo
7.
Ecology ; 104(12): e4184, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37787980

RESUMO

Biodiversity drives ecosystem processes, but its influence on deadwood decomposition is poorly understood. To test the effects of insect diversity on wood decomposition, we conducted a mesocosm experiment manipulating the species richness and functional diversity of beetles. We applied a novel approach using computed tomography scanning to quantify decomposition by insects and recorded fungal and bacterial communities. Decomposition rates increased with both species richness and functional diversity of beetles, but the effects of functional diversity were linked to beetle biomass, and to the presence of one large-bodied species in particular. This suggests that mechanisms behind observed biodiversity effects are the selection effect, which is linked to the occurrence probability of large species, and the complementarity effect, which is driven by functional differentiation among species. Additionally, beetles had significant indirect effects on wood decomposition via bacterial diversity, fungal community composition, and fungal biomass. Our experiment shows that wood decomposition is driven by beetle diversity and its interactions with bacteria and fungi. This highlights that both insect and microbial biodiversity are critical to maintaining ecosystem functioning.


Assuntos
Besouros , Madeira , Animais , Madeira/microbiologia , Ecossistema , Insetos , Biodiversidade , Bactérias
8.
FEMS Microbiol Ecol ; 99(9)2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37656873

RESUMO

Despite growing interest in fungal necromass decomposition due to its importance in soil carbon retention, whether a consistent group of microorganisms is associated with decomposing necromass remains unresolved. Here, we synthesize knowledge on the composition of the bacterial and fungal communities present on decomposing fungal necromass from a variety of fungal species, geographic locations, habitats, and incubation times. We found that there is a core group of both bacterial and fungal genera (i.e. a core fungal necrobiome), although the specific size of the core depended on definition. Based on a metric that included both microbial frequency and abundance, we demonstrate that the core is taxonomically and functionally diverse, including bacterial copiotrophs and oligotrophs as well as fungal saprotrophs, ectomycorrhizal fungi, and both fungal and animal parasites. We also show that the composition of the core necrobiome is notably dynamic over time, with many core bacterial and fungal genera having specific associations with the early, middle, or late stages of necromass decomposition. While this study establishes the existence of a core fungal necrobiome, we advocate that profiling the composition of fungal necromass decomposer communities in tropical environments and other terrestrial biomes beyond forests is needed to fill key knowledge gaps regarding the global nature of the fungal necrobiome.


Assuntos
Micobioma , Micorrizas , Animais , Carbono , Ecossistema , Florestas
9.
Mol Ecol Resour ; 23(8): 1800-1811, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37561110

RESUMO

Metagenomics provides a tool to assess the functional potential of environmental and host-associated microbiomes based on the analysis of environmental DNA: assembly, gene prediction and annotation. While gene prediction is straightforward for most bacterial and archaeal taxa, it has limited applicability in the majority of eukaryotic organisms, including fungi that contain introns in gene coding sequences. As a consequence, eukaryotic genes are underrepresented in metagenomics datasets and our understanding of the contribution of fungi and other eukaryotes to microbiome functioning is limited. Here, we developed a machine intelligence-based algorithm that predicts fungal introns in environmental DNA with reasonable precision and used it to improve the annotation of environmental metagenomes. Intron removal increased the number of predicted genes by up to 9.1% and improved the annotation of several others. The proportion of newly predicted genes increased with the share of eukaryotic genes in the metagenome and-within fungal taxa-increased with the number of introns per gene. Our approach provides a tool named SVMmycointron for improved metagenome annotation, especially of microbiomes with a high proportion of eukaryotes. The scripts described in the paper are made publicly available and can be readily utilized by microbiome researchers analysing metagenomics data.

10.
Ecol Lett ; 26(9): 1523-1534, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37330626

RESUMO

Despite host-fungal symbiotic interactions being ubiquitous in all ecosystems, understanding how symbiosis has shaped the ecology and evolution of fungal spores that are involved in dispersal and colonization of their hosts has been ignored in life-history studies. We assembled a spore morphology database covering over 26,000 species of free-living to symbiotic fungi of plants, insects and humans and found more than eight orders of variation in spore size. Evolutionary transitions in symbiotic status correlated with shifts in spore size, but the strength of this effect varied widely among phyla. Symbiotic status explained more variation than climatic variables in the current distribution of spore sizes of plant-associated fungi at a global scale while the dispersal potential of their spores is more restricted compared to free-living fungi. Our work advances life-history theory by highlighting how the interaction between symbiosis and offspring morphology shapes the reproductive and dispersal strategies among living forms.


Assuntos
Micorrizas , Simbiose , Animais , Humanos , Ecossistema , Fungos , Insetos , Plantas , Esporos Fúngicos
11.
Ecol Lett ; 26(7): 1157-1173, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37156097

RESUMO

The species-energy hypothesis predicts increasing biodiversity with increasing energy in ecosystems. Proxies for energy availability are often grouped into ambient energy (i.e., solar radiation) and substrate energy (i.e., non-structural carbohydrates or nutritional content). The relative importance of substrate energy is thought to decrease with increasing trophic level from primary consumers to predators, with reciprocal effects of ambient energy. Yet, empirical tests are lacking. We compiled data on 332,557 deadwood-inhabiting beetles of 901 species reared from wood of 49 tree species across Europe. Using host-phylogeny-controlled models, we show that the relative importance of substrate energy versus ambient energy decreases with increasing trophic levels: the diversity of zoophagous and mycetophagous beetles was determined by ambient energy, while non-structural carbohydrate content in woody tissues determined that of xylophagous beetles. Our study thus overall supports the species-energy hypothesis and specifies that the relative importance of ambient temperature increases with increasing trophic level with opposite effects for substrate energy.


Assuntos
Besouros , Ecossistema , Animais , Árvores , Madeira , Biodiversidade , Europa (Continente)
12.
FEMS Microbiol Ecol ; 99(5)2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37028943

RESUMO

Alpine tundra ecosystems suffer from ongoing warming-induced tree encroachment and vegetation shifts. While the effects of tree line expansion on the alpine ecosystem receive a lot of attention, there is also an urgent need for understanding the effect of climate change on shifts within alpine vegetation itself, and how these shifts will consequently affect soil microorganisms and related ecosystem characteristics such as carbon storage. For this purpose, we explored relationships between climate, soil chemistry, vegetation, and fungal communities across seven mountain ranges at 16 alpine tundra locations in Europe. Among environmental factors, our data highlighted that plant community composition had the most important influence on variation in fungal community composition when considered in combination with other factors, while climatic factors had the most important influence solely. According to our results, we suggest that rising temperature, associated with a replacement of ericoid-dominated alpine vegetation by non-mycorrhizal or arbuscular mycorrhizal herbs and grasses, will induce profound changes in fungal communities toward higher dominance of saprotrophic and arbuscular mycorrhizal fungi at the expense of fungal root endophytes. Consequently, topsoil fungal biomass and carbon content will decrease.


Assuntos
Micobioma , Micorrizas , Ecossistema , Carbono , Plantas , Solo/química , Árvores , Microbiologia do Solo
13.
Appl Environ Microbiol ; 89(5): e0036123, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37067424

RESUMO

The decomposition of wood and detritus is challenging to most macroscopic organisms due to the recalcitrant nature of lignocellulose. Moreover, woody plants often protect themselves by synthesizing toxic or nocent compounds which infuse their tissues. Termites are essential wood decomposers in warmer terrestrial ecosystems and, as such, they have to cope with high concentrations of plant toxins in wood. In this paper, we evaluated the influence of wood age on the gut microbial (bacterial and fungal) communities associated with the termites Reticulitermes flavipes (Rhinotermitidae) (Kollar, 1837) and Microcerotermes biroi (Termitidae) (Desneux, 1905). We confirmed that the secondary metabolite concentration decreased with wood age. We identified a core microbial consortium maintained in the gut of R. flavipes and M. biroi and found that its diversity and composition were not altered by the wood age. Therefore, the concentration of secondary metabolites had no effect on the termite gut microbiome. We also found that both termite feeding activities and wood age affect the wood microbiome. Whether the increasing relative abundance of microbes with termite activities is beneficial to the termites is unknown and remains to be investigated. IMPORTANCE Termites can feed on wood thanks to their association with their gut microbes. However, the current understanding of termites as holobiont is limited. To our knowledge, no studies comprehensively reveal the influence of wood age on the termite-associated microbial assemblage. The wood of many tree species contains high concentrations of plant toxins that can vary with their age and may influence microbes. Here, we studied the impact of Norway spruce wood of varying ages and terpene concentrations on the microbial communities associated with the termites Reticulitermes flavipes (Rhinotermitidae) and Microcerotermes biroi (Termitidae). We performed a bacterial 16S rRNA and fungal ITS2 metabarcoding study to reveal the microbial communities associated with R. flavipes and M. biroi and their impact on shaping the wood microbiome. We noted that a stable core microbiome in the termites was unaltered by the feeding substrate, while termite activities influenced the wood microbiome, suggesting that plant secondary metabolites have negligible effects on the termite gut microbiome. Hence, our study shed new insights into the termite-associated microbial assemblage under the influence of varying amounts of terpene content in wood and provides a groundwork for future investigations for developing symbiont-mediated termite control measures.


Assuntos
Isópteros , Madeira , Animais , Madeira/metabolismo , Ecossistema , Isópteros/microbiologia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Bactérias/genética
14.
Nat Rev Microbiol ; 21(8): 487-501, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36941408

RESUMO

Forests influence climate and mitigate global change through the storage of carbon in soils. In turn, these complex ecosystems face important challenges, including increases in carbon dioxide, warming, drought and fire, pest outbreaks and nitrogen deposition. The response of forests to these changes is largely mediated by microorganisms, especially fungi and bacteria. The effects of global change differ among boreal, temperate and tropical forests. The future of forests depends mostly on the performance and balance of fungal symbiotic guilds, saprotrophic fungi and bacteria, and fungal plant pathogens. Drought severely weakens forest resilience, as it triggers adverse processes such as pathogen outbreaks and fires that impact the microbial and forest performance for carbon storage and nutrient turnover. Nitrogen deposition also substantially affects forest microbial processes, with a pronounced effect in the temperate zone. Considering plant-microorganism interactions would help predict the future of forests and identify management strategies to increase ecosystem stability and alleviate climate change effects. In this Review, we describe the impact of global change on the forest ecosystem and its microbiome across different climatic zones. We propose potential approaches to control the adverse effects of global change on forest stability, and present future research directions to understand the changes ahead.


Assuntos
Ecossistema , Microbiota , Florestas , Solo , Plantas , Mudança Climática , Nitrogênio , Bactérias
15.
Sci Total Environ ; 875: 162676, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36894081

RESUMO

Cistus scrublands are pyrophytic ecosystems and occur widely across Mediterranean regions. Management of these scrublands is critical to prevent major disturbances, such as recurring wildfires. This is because management appears to compromise the synergies necessary for forest health and the provision of ecosystem services. Furthermore, it supports high microbial diversity, opening questions of how forest management practices impact belowground associated diversity as research related to this issue is scarce. This study aims to investigate the effects of different fire prevention treatments and site history on bacterial and fungi co-response and co-occurrence patterns over a fire-risky scrubland ecosystem. Two different site histories were studied by applying three different fire prevention treatments and samples were analyzed by amplification and sequencing of ITS2 and 16S rDNA for fungi and bacteria, respectively. The data revealed that site history, especially regarding fire occurrence, strongly influenced the microbial community. Young burnt areas tended to have a more homogeneous and lower microbial diversity, suggesting environmental filtering to a heat-resistant community. In comparison, young clearing history also showed a significant impact on the fungal community but not on the bacteria. Some bacteria genera were efficient predictors of fungal diversity and richness. For instance, Ktedonobacter and Desertibacter were a predictor of the presence of the edible mycorrhizal bolete Boletus edulis. These results demonstrate fungal and bacterial community co-response to fire prevention treatments and provide new tools for forecasting forest management impacts on microbial communities.


Assuntos
Incêndios , Microbiota , Micobioma , Ecossistema , Bactérias , Florestas , Microbiologia do Solo , Solo
16.
FEMS Microbiol Ecol ; 99(4)2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36906283

RESUMO

Deadwood decomposition and other environmental processes mediated by microbial communities are generally studied with composite sampling strategies, where deadwood is collected from multiple locations in a large volume, that produce an average microbial community. In this study, we used amplicon sequencing to compare fungal and bacterial communities sampled with either traditional, composite samples, or small, 1 cm3 cylinders from a discrete location within decomposing European beech (Fagus sylvatica L.) tree trunks. We found that bacterial richness and evenness is lower in small samples when compared to composite samples. There was no significant difference in fungal alpha diversity between different sampling scales, suggesting that visually defined fungal domains are not restricted to a single species. Additionally, we found that composite sampling may obscure variation in community composition and this affects the understanding of microbial associations that are detected. For future experiments in environmental microbiology, we recommend that scale is explicitly considered as a factor and properly selected to correspond with the questions asked. Studies of microbial functions or associations may require samples to be collected at a finer scale than is currently practised.


Assuntos
Fagus , Microbiota , Micobioma , Fagus/microbiologia , Bactérias/genética , Árvores/microbiologia , Fungos/genética
17.
Mol Ecol Resour ; 23(5): 1066-1076, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36847735

RESUMO

As most eukaryotic genomes are yet to be sequenced, the mechanisms underlying their contribution to different ecosystem processes remain untapped. Although approaches to recovering Prokaryotic genomes have become common in genome biology, few studies have tackled the recovery of eukaryotic genomes from metagenomes. This study assessed the reconstruction of microbial eukaryotic genomes using 6000 metagenomes from terrestrial and some transition environments using the EukRep pipeline. Only 215 metagenomic libraries yielded eukaryotic bins. From a total of 447 eukaryotic bins recovered 197 were classified at the phylum level. Streptophytes and fungi were the most represented clades with 83 and 73 bins, respectively. More than 78% of the obtained eukaryotic bins were recovered from samples whose biomes were classified as host-associated, aquatic, and anthropogenic terrestrial. However, only 93 bins were taxonomically assigned at the genus level and 17 bins at the species level. Completeness and contamination estimates were obtained for a total of 193 bins and consisted of 44.64% (σ = 27.41%) and 3.97% (σ = 6.53%), respectively. Micromonas commoda was the most frequent taxon found while Saccharomyces cerevisiae presented the highest completeness, probably because more reference genomes are available. Current measures of completeness are based on the presence of single-copy genes. However, mapping of the contigs from the recovered eukaryotic bins to the chromosomes of the reference genomes showed many gaps, suggesting that completeness measures should also include chromosome coverage. Recovering eukaryotic genomes will benefit significantly from long-read sequencing, development of tools for dealing with repeat-rich genomes, and improved reference genomes databases.


Assuntos
Eucariotos , Metagenoma , Eucariotos/genética , Ecossistema , Genoma Microbiano , Fungos/genética , Metagenômica
18.
Glob Chang Biol ; 29(6): 1437-1450, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36579623

RESUMO

Intensification of land use by humans has led to a homogenization of landscapes and decreasing resilience of ecosystems globally due to a loss of biodiversity, including the majority of forests. Biodiversity-ecosystem functioning (BEF) research has provided compelling evidence for a positive effect of biodiversity on ecosystem functions and services at the local (α-diversity) scale, but we largely lack empirical evidence on how the loss of between-patch ß-diversity affects biodiversity and multifunctionality at the landscape scale (γ-diversity). Here, we present a novel concept and experimental framework for elucidating BEF patterns at α-, ß-, and γ-scales in real landscapes at a forest management-relevant scale. We examine this framework using 22 temperate broadleaf production forests, dominated by Fagus sylvatica. In 11 of these forests, we manipulated the structure between forest patches by increasing variation in canopy cover and deadwood. We hypothesized that an increase in landscape heterogeneity would enhance the ß-diversity of different trophic levels, as well as the ß-functionality of various ecosystem functions. We will develop a new statistical framework for BEF studies extending across scales and incorporating biodiversity measures from taxonomic to functional to phylogenetic diversity using Hill numbers. We will further expand the Hill number concept to multifunctionality allowing the decomposition of γ-multifunctionality into α- and ß-components. Combining this analytic framework with our experimental data will allow us to test how an increase in between patch heterogeneity affects biodiversity and multifunctionality across spatial scales and trophic levels to help inform and improve forest resilience under climate change. Such an integrative concept for biodiversity and functionality, including spatial scales and multiple aspects of diversity and multifunctionality as well as physical and environmental structure in forests, will go far beyond the current widely applied approach in forestry to increase resilience of future forests through the manipulation of tree species composition.


Assuntos
Ecossistema , Florestas , Humanos , Filogenia , Biodiversidade , Agricultura Florestal
19.
Methods Mol Biol ; 2605: 157-168, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36520393

RESUMO

Stable isotope probing (SIP) provides the opportunity to label decomposer microorganisms that build their biomass on a specific substrate. In combination with high-throughput sequencing, SIP allows for the identification of microbial community members involved in a particular decomposition process. Further information can be gained (in SIP experiments) through gene-targeted metagenomics and metatranscriptomics, opening the possibility to describe the pool of genes catalyzing specific decomposition reactions in situ and to identify the diversity of genes that are expressed. When combined with gene descriptions of fungal and/or bacterial isolates from the same environment, specific biochemical reactions involved in decomposition can be linked to individual microbial taxa. Here, we describe the use of these methods to explore the decomposer community of fungi and bacteria in forest litter and soil.


Assuntos
Micobioma , Solo/química , Biomassa , Microbiologia do Solo , Fungos/metabolismo , Florestas , Bactérias/metabolismo
20.
mSystems ; 7(6): e0082922, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36413015

RESUMO

Microorganisms dominate all ecosystems on Earth and play a key role in the turnover of organic matter. By producing enzymes, they degrade complex carbohydrates, facilitating the recycling of nutrients and controlling the carbon cycle. Despite their importance, our knowledge regarding microbial carbohydrate utilization has been limited to genome-sequenced taxa and thus heavily biased to specific groups and environments. Here, we used the Genomes from Earth's Microbiomes (GEM) catalog to describe the carbohydrate utilization potential in >7000 bacterial and archaeal taxa originating from a range of terrestrial, marine and host-associated habitats. We show that the production of carbohydrate-active enzymes (CAZymes) is phylogenetically conserved and varies significantly among microbial phyla. High numbers of carbohydrate-active enzymes were recorded in phyla known for their versatile use of carbohydrates, such as Firmicutes, Fibrobacterota, and Armatimonadota, but also phyla without cultured representatives whose carbohydrate utilization potential was so far unknown, such as KSB1, Hydrogenedentota, Sumerlaeota, and UBP3. Carbohydrate utilization potential reflected the specificity of various habitats: the richest complements of CAZymes were observed in MAGs of plant microbiomes, indicating the structural complexity of plant biopolymers. IMPORTANCE This study expanded our knowledge of the phylogenetic distribution of carbohydrate-active enzymes across prokaryotic tree of life, including new phyla where the carbohydrate-active enzymes composition have not been described until now and demonstrated the potential for carbohydrate utilization of numerous yet uncultured phyla. Profiles of carbohydrate-active enzymes are largely habitat-specific and reflect local carbohydrate availability by selecting taxa with appropriate complements of these enzymes. This information should aid in the prediction of functions in microbiomes of known taxonomic composition and helps to identify key components of habitat-specific carbohydrate pools. In addition, these findings have a high relevance for the understanding of carbohydrate utilization and carbon cycling in the environment, the process that is closely link to the carbon storage potential of Earth habitats and the production of greenhouse gasses.


Assuntos
Bactérias , Microbiota , Filogenia , Bactérias/genética , Carboidratos , Microbiota/genética , Carbono/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...